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Estimation of parameters in hidden Markov
models

By W. Qia~x AxD D. M. TITTERINGTON
Department of Statistics, Unirersily of Glasgow, Glasgow G12 8QQ, U.K.

Parameter estimation from noisy versions of realizations of Markov models is
extremely difficult in all but very simple examples. The paper identifies these
difficulties, reviews ways of coping with them in practice, and discusses in detail a
class of methods with a Monte Carlo flavour. Their performance on simple examples
suggests that they should be valuable, practically feasible procedures in the context
of a range of otherwise intractable problems. An illustration is provided based on
satellite data.
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1. Introduction

There is a wide class of problems in statistics that can be regarded as incomplete-data
problems. The observed data, to be modelled as a realization of a random vector, Y,
are interpreted as a partly observed version of a ‘complete’ set of data, which would
be a realization of a random vector, Z. Often, Z has physical meaning, as in the
context of data with missing values. Here

Z=(X,Y), (1.1)
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where X represents the missing values.

It should be emphasized that there is a range of incomplete-data problems that are
not so obviously represented by the ‘complete data = observed data-+ missing
values’ paradigm of (1.1). These include such topics as censored and truncated data;
see Dempster et al. (1977) and Little & Rubin (1987) for many examples and much
discussion. However, in the present paper, we concentrate on missing data problems.
In particular, we assume that

Z = {Zi},

where Z, = (X,, Y,),? = 1,...,n. Here, n represents the number of individuals or items
in a sample, or, in our later discussion, the number of pixels in an image. Thus each
of the n ‘observations’ consists of multivariate data of which Y; is observed and X,
is missing. In the present paper, we assume that each X, corresponds to the same
variable or variables in the multivariate data vector. Thus we are considering a more
particular structure than is typical in the context of, say, sample-survey data with
non-response a possibility in any of the individual variables. In the simplest version
of our structure (which is also both very common in practice and the one we shall
consider in detail throughout the paper), X, is one dimensional, discrete and finite
valued. Somewhat more generally, each X, has the same sample space, and similarly
for the Y,. Without too much extra effort, one could cope with additional
incompleteness within the Y, but we shall not introduce this extra complication.
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408 W. Qian and D. M. Tilleyingiou

Some particular examples of our structure are as follows.

(a) {X,} are the (unknown) age-categories of n fish and {Y;} are the observed lengths
of the fish.

(b) {X,} are a time-sequence of n (unknown) configurations of an individual’s vocal
tract and {Y;} are the corresponding sequence of projected sounds.

(¢) X denotes the true surface-typing of a pixellated area of land and Y denotes the
corresponding image observed by a satellite.

Case (c) is just one illustration of a noisy image, other examples of which occur in
many fields, such as petrology and medicine; see Aykroyd & Green (1991), for
instance.

In all these illustrations, the X, are ‘real’ physical quantities. However, in some
applications of our models, the X, are latent variables, familiar in factor analysis and,
potentially, in statistical approaches to neural networks; see also §7.

The key feature of our work will be the proposal of a statistical model for Z in the
form of the joint probability density

fiZ16) = fX,Y|0), (1.2)

where the functional form, f, will be treated as being known. If we are provided with
data Y = y, therefore, two quantities are uncertain, the associated missing values x
and the unknown parameter(s), 8. It pays to recognize the different natures of these
two unknown quantities, and this is reflected in the different terminology we shall use
for the two operations of trying to identify them on the basis of y; we might wish to
(i) impute values for the missing data, x, and/or (ii) estimate the unknown
parameter(s), 6.

The importance of making this distinction is emphasized later in the paper and is
also highlighted by Little & Rubin (1983). We shall make some reference to objective
(i), but the principal aim of this paper is to discuss approaches to (ii) and, in
particular, to examine, and attempt to deal with, complications with maximum
likelihood estimation in a class of problems with important applications.

The layout of the paper is as follows. In §2, we discuss the class of models of
interest and, in §3, we highlight the difficulty of obtaining maximum likelihood
estimates of parameters. A discussion of various approaches that attempt to obviate
the difficulties in §4 is followed by a detailed, illustrated investigation of a subclass
of procedures, based on Monte Carlo methods, in §5. An example involving satellite
data is presented in §6 and a small discussion in §7 concludes the paper.

2. Mixture models, dependence structures and applications

There are, formally, the following two ways of factorizing (1.2) in terms of a
conditional distribution,

fle,yl0) = ply|z,0)m(x]0) (2.1)
and fle,yl0) =n(x|y,0)p(y|0). (2.2)

We generically denote ‘densities’ associated with X by #, and those associated
with Y by p. Clearly, the marginal density for Y, p(:|6), which defines the likelihood
function for the observed data, is also given by

Py16) = J Py, 6) Al |6), 2.3)

Phil. Trans. R. Soc. Lond. A (1991)
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where I1( | 0) is the measure associated with 77(-| 0). Equation (2.3) displays p(y|6) in
the form of a mixture density, with 7I(-| ) as mixing measure and X as the mixing
variable. Formulation (2.2) is important, in that the factor 7 (:|y,8) is the natural
basis for methods of imputing values for the missing X, given observed data y, but
we concentrate largely on (2.1) and (2.3).

It will often be natural to write 6 = (§, ), where ¢ and g are distinct sets of
parameters, each set with its own parameter space, associated respectively with the
two factors on the right-hand side of (2.1). Thus

fla,y10) = plylz, p)m(z| ). (2.4)

Recall that models such as (2.4) are associated with data on » individuals or items.
Thus, for instance,
X, Y)={X,, X)), e =1,...,n}

Very often, the Y, are conditionally independent, given the X;, so that

plyle. @) = I pylz, ), (2.5)

=1
or, even more simply,

]

pylx, @) =11 p(y;| %, P). (2.6)
i=1

So far as estimation is concerned, the major complications emanate from the factor
7(x|B) in (2.4). As described in Titterington (1990), a gradation in complexity can be
identified by considering different dependence patterns among the X;. Except when
discussing Example 5.2, we assume throughout that each X, takes one of a finite set
of k qualitative values {c,,...,c;}, although some of the formulation can be
generalized to cover, for instance, the case of an AR(1) process with additive noise,
equivalent to an ARMA(1, 1) process.

(a) Standard mizture model

Here, the X, are independent, and we shall assume them to be identically
distributed. Thus, if (2.6) obtains, the Z, are independent and the ¥; are marginally

so. As a result,
n

m(x|f) = [l 7(x;| ),

i=1

n k

and py|0)=1I {Z P;(¥;| ¢)ﬂ;}, (2.7)
i=1 (=1

where (il ) = p(y; | X; = ¢;, P)

and m; = prob (X; = ¢)),

for all j. (In the context of images, the ¢; may be a set of colours, usually representing
some discrete classification of the pixels in the true scene.) the 7; are called mixing
weights and p(y | 0) represents the joint density of a random sample from a finite, k-
component mixture distribution. Since the mixing X, are, marginally, samples from
a multinomial distribution, the mixture model may, in this case, be thought of as
a hidden multinomial model. There are very many applications of standard mixture
models; see Titterington et al. (1985), Titterington (1990) and references therein.

Phil. Trans. R. Soc. Lond. A (1991)
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(b) Hidden Markov chain model
We now admit a simple form of dependence among the z;, namely that

m(x| p) = m(x,| ) ? {m(z; |2y, P)}-

Thus the x; form a Markov chain, which is generally assumed to be stationary.
Since the X; are now no longer independent, the marginal density for Y; no longer
simplifies in the way that (2.7) does. The Y; are said to come from a hidden Markov
chain model, and the study of such models has become extremely popular in the
speech recognition literature (Juang & Rabiner 1991 ; Bourlard 1990), as well as in
the analysis of neurophysiological data.

In the former context, the X, form a sequence (in time) of underlying prototypical
spectra, each representing one of a (finite) number of configurations of the vocal
tract, and the Y; are random functions thereof.

(c) More general hidden Markov models

Perhaps the currently most familiar application of more general hidden Markov
models is the hidden Markov random field model for noisy images. Here, the
subscript ¢ identifies a pixel-site, or a line-site, in a pixellated image, X represents
the true scene and Y the observed image, which is just a blurred and/or noisy version
of X.

We allow a more general, but still markovian marginal model for the X,, and
represent their joint density by that of a Gibbs distribution. Thus,

m(Z[p) = (1/0(B)) exp {=U(Z, B)},

where C(f) is a normalizing constant (the partition function), and the energy
function, U, takes the additive form

Uz, p) = Z V%, p),
ce®

where 0 is a class of subsets of the sites, and V, is the potential function associated
with subset c. Usually, each ¢ € @ consists of only a few sites. For instance, in the case
of pairwise-interaction models, @ contains only the elementary subsets consisting of
the individual sites themselves, along with some two-site subsets, each containing a
pair of ‘neighbouring’ sites; for popular two-dimensional examples, see Geman &
Geman (1984). In the context of images, the structure of the Gibbs distribution is
intended to reflect plausible local, spatial correlation in the true scene. Thus,
typically, each V,involves only a very small subset of the Z,. As in the hidden Markov
chain case, the likelihood function defined by the marginal density, p(y|6), does not
take a simple form.

The seminal papers on this application are Geman & Geman (1984) and Besag
(1986). Those papers and many others, including Aykroyd & Green (1991), contain
much material about restoring the scene (equivalent in our phraseology to imputing
values for the missing x). Along with Ripley (1988), they also have something to say
about the other problem, namely, that of estimating 6, that is the main focus of the
present paper.

So far as p(y |z, ¢) is concerned, we shall assume that (2.6) holds. Note, however,
that (2.6) does not cover the case of systematic blurring, although the general

Phil. Trans. R. Soc. Lond. A (1991)
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methods we describe are not necessarily limited, in terms of applicability, to non-
blurred images.

3. Maximum likelihood estimation: methods and difficulties

As a general rule, parameter estimation from incomplete data is more awkward
than would be the case if the data were complete. Often, the additional difficulty is
simply that, whereas explicit formulae exist for estimates in the complete-data case,
iterative numerical methods are now required. Sometimes, the situation is even more
awkward, particularly when the complete-data version is itself non-trivial. The
maximum-likelihood treatment of the models in §2 illustrates these points very well;
see Titterington (1990) for a more detailed exposition.

We restrict our discussion to the case where each x;e{c,,..., ¢}

Even for the simplest (hidden multinominal) model, explicit maximum likelihood
estimates are hardly ever (not quite never!) available. Were the x; known, parameter
estimation would often be trivial: the £ mixing weights would be estimated by
relevant relative frequencies and the parameters associated with, say, p;(*|x;, ¢) are
often easily estimated. Recently, a particular numerical procedure, the Em-algorithm
(Dempster et al. 1977) has pervaded the incomplete-data literature. In the mth
iterative stage, current estimates, 6™, are updated to 6™* by the following double
step:

E-step: compute Q™ (6) = E{ln f(X,y|0)|y, 0™},

M-step: find § = 6+ to maximize Q™ (6).

Typically, the mM-step is as easy or hard as is the computation of maximum
likelihood estimates from complete data; the E-step involves ‘averaging out’ over
the missing values and is sometimes loosely equivalent to imputing for the missing
values.

Repetition of the double step generates a non-decreasing sequence of values of the
log-likelihood (associated with y) and convergence to a local maximum likelihood
estimate can often be proved.

The levels of difficulty involved in the implementation of the Em-algorithm can be
summarized as follows, in which ‘explicit’ means that an explicit formula exists, not
requiring numerical integration or summation (E-step) or iterative solution (M-step).

(1) Hidden multinomial. E-step: explicit; M-step: explicit.

(i1) Hidden Markov chain. B-step: explicit, although it does require a forwards and
a backwards recursion through the data; M-step: explicit.

Details are provided in Titterington (1990). Note that, in claiming that the m-step
is explicit, it is assumed that we are dealing with a case in which the ‘colour-
conditional * densities p; admit explicit maximum likelihood estimates. This is true,
for instance, for the case of gaussian densities, but not for beta densities.

(iii) Hidden Markov random field. E-step: very difficult; mM-step: very difficult.

In the above, ‘very difficult’ borders on the impossible, at least so far as exact
calculation is concerned ! To explain this, it is helpful to introduce a slight change of
notation. Let X; now denote an indicator vector, of length &, which has unity as the
jth element, and zero elsewhere, if pixel i is of colour ¢;. Let X;; denote the jth element
of X;. Then

In f(X,y16) = — £ VX, )~ In C(A) + L XX, In py(y, ] §).
c v ]

Phil. Trans. R. Soc. Lond. A (1991)
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In the E-step we must therefore compute, given 6™,

QUI(0) ==X W(A)—In C(B)+ZZXE” In py(y;| ¢),
i

where W (B) = B{V,(X, B) |y, 0™}
and X = E(X; |y, 0).

[N

Exact computation of both (3.1) and (3.2) is, typically, impossible.

So far as the mM-step is concerned, computation of ¢™*V is often straightforward,
as in the earlier models. Maximization of the part of @ (f) depending on £ is not
easy, in general, largely because computation of '(§) is hardly ever feasible. In other
words, even if we have a pure realization from a Markov random field, maximum
likelihood estimation of the underlying parameter, f, is not a practical proposition.

The inherent difficulties are well illustrated by the following simple example.

Example 3.1. Exponential family case

Suppose
fle,y16) = (1/D(0)) exp {H(x, y)" 0}. (3.3)

Then the M double step is as follows.

E-step: evaluate B{H(X,y)|y, 0™}.

M-step: solve E{H(X,y)| 0} = BE{H(X,y)|y, 0™} to obtain 6 = 6™V,

In general, neither of the above expectations can be computed explicitly, nor can
the equation in the M-step be solved without numerical methods. Both expectations
can be approximated by sample means created by multiple implementations of the
two associated Gibbs samplers. (These Gibbs samplers are simply mechanisms for
simulating realizations from the relevant Gibbs distributions. From an arbitrary
initial configuration, a realization for a given site is simulated from its distribution
conditional on the rest of the configuration. The configuration is updated, the
procedure is repeated for each site and the whole operation iterated a ‘large’ number
of times. Ultimately, a valid realization is created (see also Smith 1991).)

However, only in very simple cases is the procedure feasible in practice, because
of the scale of computations. Geman & McClure (1987) describe a one-parameter
problem, for which an off-line approximation to the function E{H(X,y)|0} is
computed at the outset, using a grid of #-values.

One important idea with considerable promise, also involving Monte Carlo
procedures, is the approach of Geyer & Thompson (1992). Although they concentrate
on the case of non-noisy data, their idea is useful in the M-step of the Em algorithm
for Example 3.1, where we have to maximize, with respect to 6,

BLH(X, )|y, 07T 6 —1In D(B). (3.4)

The difficulty lies in the intractability of D(8), but Geyer & Thompson (1992) note
that, for any ¢,

D) = D) f exp (H(z,y)" (0—0)} dF(z,y| 8, (3.5)

which is simply proportional to a moment generating function, may be approximated
by the empirical counterpart

M =z

D y(0) = D(0") 5

1 "
]”\‘7 exp {H(xr’yr)r(e_el)}’

r=1

Phil. Trans. R. Soc. Lond. A (1991)
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where {(z,,y,),r=1,...,N} are realizations from the distribution with density
flx,y16’). Since (3.4) involves In D(f), to be approximated by In D, (6), rather then
D(0) itself, it is not necessary to know D(6’) when computing the maximal 6. Geyer
& Thompson (1992) give much more detail, including guidance about the choice of
0. Clearly, the choice of 8" = 6™ is a natural one when computing 6“**V in the Em
algorithm. Alternatively, one could use the same N simulated realizations throughout
the Em algorithm.

Asnoted by Besag (1976), (3.5) has a history going back at least to Bartlett (1971).

4. Practical parameter estimation for hidden Markov models

A variety of more practicable procedures have been considered for dealing with
data from hidden Markov models. Some of them are comparatively general in scope,
whereas others are appropriate only for special cases.

4.1. Methods based on decision-directed imputation

Recall that, for most hidden Markov models, there are two difficulties: (@) X is
missing; (b) even were X provided, maximum likelihood estimation of # would be
difficult.

One general approach is to generate a sequence {(6™, ™), m = 0, 1,...} of pairs of
iterates for 6 and the missing X such that 2™*V is created on the basis of y and ™,
and 6D ig ‘estimated’ from y and x™*V,

The general form of the iterative stage in what we might call the restoration—
maximization (RM) algorithm is as follows, given {§™ x(™},

R-step: create x™*V from m(x|y, 6™);

M-step: choose 6 = ™D to maximize

ply |2, gy (V| ), (4.1)

where 7,(x™* | #) is an amenable alternative to 7#(x™*V | f), such as Besag’s (1975)
pseudo-likelihood, defined by

o

(o, "V [, ), (4.2)

i=1

in which x,; denotes the values of « on the neighbouring pixels to pixel ¢. The crucial
simplifying feature of the pseudo-likelihood is that the partition function C(g) is
absent.

There are various specific versions of the R-step, including the following.

Ricy (Besag 1986) : apply Besag’s (1986) rcm (iterated conditional modes) algorithm
to (-|y, 6™). This iterative procedure, which typically converges quickly, locates an
™1 that may be close to the true mode.

Ryap: COmpute (or attempt to compute) the true mode of 7(:|y, 6™), thereby
obtaining the maximum a posteriori (MAP) restoration. For very special situations
(Greig et al. 1989), the maP restoration may be obtained exactly. Otherwise,
techniques such as simulated annealing (Geman & Geman 1984) have been proposed
which may or may not attain the mode in practice.

There are, however, unsatisfactory aspects of this approach of trying to find a
modal restoration and then behaving, in the M-step, as if the restoration is the true
scene. We are effectively attempting to maximize f(x,y|6) simultaneously with

Phil. Trans. R. Soc. Lond. A (1991)
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respect to the missing « and the unknown 6. The finite mixture (hidden multinomial)
version of this approach is well known to lead to biases in the estimates of 6 (see, for
example, Marriott 1975; Titterington 1984).

Modal restoration is in the same spirit as so-called decision-directed learning,
familiar in the engineering literature on unsupervised learning. To explain this
concept, let 4(x) denote, in general, a randomized rule whereby restoration x is
selected with probability 4(x), for all z. Decision-directed rules correspond to 4 being
degenerate. Thus modal restoration is representable by

1 if x is the posterior mode,
A(x ={

0 otherwise.

For further discussion of decision-directed learning, see, for instance, ch. 6 of
Titterington et al. (1985).

The problem can be attacked by modifying either or both of the r-step and the m-
step.

Qian & Titterington (1991) modified the latter as follows. If (2.6) applies, then
(4.1), combined with (4.2), gives

,’:13

Dy | 2™, @) m(@™ V|2, B}
2

Instead, Qian & Titterington (1991) used

I

1

:[3

{ply; |20, 0)}. (4.3)

2

1

There are various points to make about (4.3). Note that it can be written

11 {S ptl e el otp s p = 11 7m0 o).

i=1 \z; =

where, for each 7,
mm () = mlw, = a0, B), =1, ke (44)

In spite of the tortuous notation, it can be seen that the k quantities in (4.4) are
a set of mixing weights, and that (4.3) takes the form of a likelihood from
independent observations from finite mixtures of the same component densities. The
sets of mixing weights vary, but are clearly linked through the common g, and are
locally associated, because of the dependence on ;. Qian & Titterington (1991) used
a few steps of the EmM algorithm to maximize (4.3) within the M-step of the rm
algorithm. Clearly, within the ith factor of (4.3), the method still treats x{"**? as if
it were the truth. However, acknowledgement that x; itself is unknown appears to
lead to improved estimates of the parameters and subsequently to robust restoration
procedures; see the authors’ reply to the discussion of Besag et al. (1991).

Qian & Titterington (1991) call their estimation algorithm, based on (4.3), the
point-pseudo-likelihood (PPL)-EM algorithm. They also generalized the method.

4.2. Methods based on probabilistic-teacher imputation

It is also possible to modify the r-step in ways that are likely to improve the
properties of the resulting estimators. Just as the use of restorations such as posterior
modes is comparable with decision-directed imputation, so can one parallel the so-

Phil. Trans. R. Soc. Lond. A (1991)
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called probabilistic-teacher procedures familiar in the unsupervised-learning litera-
ture; see ch. 6 of Titterington et al. (1985). One essentially chooses, for ™V a
realization from 7 (x |y, #™). Thus the randomized rule A4(-) introduced in §4.1 is
non-degenerate and, in this case, is simply 7( |y, 8™). In general, it is much safer to
treat such an ™% as if it were the truth than it is in the decision-directed case.
However, any convergence properties of 8™+ will be in law rather than, say, in
probability. For the latter, further modification is clearly necessary to create a
sequence of parameter estimates with suitably ergodic behaviour. Simulation of
2™*D can be achieved in various ways, by using the Gibbs sampler of Geman &
Geman (1984), for example.

One such modified approach is the following. Choose a positive integer 7'.

R-step: simulate independent samples {x{™*V; ¢ = 1,..., T} from m(x|y, 6™D).

M-step : for each ¢, find 6,, based on {1, using (4.1) or any desired variant thereof,
and take

em) = — % 6,. (4.5)
T2

Thus each simulated x, creates an estimate of @, and those estimates are then
averaged. It will be helpful to consider this algorithm in more detail in the context

of a particular example.

Example 4.1

Suppose that there is an explicit method for estimating ¢ in the mM-step of the rm-
algorithm, so that

A

0 = g(H(x,y)),

for some functions g and H. This would obtain if f(x, y | ) were of exponential family
form (cf. Example 3.1), with invertible likelihood equation given by

E{HX,Y)|6} = H(z,y),
where H(X,Y) are the sufficient statistics. Then (4.5) takes the form

1 T
o = 7 B gl (@™, y)}.
t=1

The following represent special cases.

Example 4.1.1

If 7' = o0, and function ¢ is linear, this takes us back to the Em algorithm, which
can therefore be approximated by using the Gibbs sampler with a large but finite
value for 7'. Chalmond (1989) describes a version of this for maximizing the pseudo-
likelihood function, rather than the intractable likelihood. A somewhat similar
approach was developed by Veijanen (1990).

Example 4.1.2
The case 7' = 1 corresponds to what Celeux & Diebolt (1985) call the Stochastic
EM algorithm (sEm) algorithm. In that paper, they apply their method only to the
case of standard finite-mixture data, but it is clearly applicable more generally.
In §5, we shall consider in much more detail the implementation and behaviour of
these procedures.
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416 W. Qian and D. M. Titterington

Younes (1989) constructs a stochastic gradient algorithm for the case where the
joint distribution of X and Y belongs to the exponential family with sufficient
statistics H(X, Y). Then the likelihood equation takes the form

E{HX,Y)|0} = E(H(X, Y)|Y =y, 0.
Younes’s approach is to generate a sequence of iterations (™} according to
0D = )4 [1/(m+ DU HX D, YD) —HEP D)), (46)

for m =0,1,.... In (4.6), U is a positive constant, (X1 Y+D) are sampled from
fX,Y6"), and X" is sampled from 7 (- |y, #™). Of course, in principle, such
samples themselves involve, if the Gibbs sampler is used, many passes over the
frame.

Instead, one can run a version of the algorithm with X™*? created by applying a
single cycle of the Gibbs sampler, with 8 = 6, from X, and similarly for Xmen,

The algorithm is clearly a Monte Carlo variant of the technique known as
stochastic approximation. The procedure described in Younes (1989) for hidden
Markov random fields is a direct development of his procedure for the noise-free
Markov random field (Younes 1988). Convergence properties are somewhat
complicated but are described in the original papers. For further work along these
lines see Moyeed & Baddeley (1991).

4.3. Other methods

In view of the perceived difficulty of maximum likelihood estimation, various
other approaches have been explored. The method of moments has been implemented
on simple models, by Frigessi & Piccioni (1988, 1990) for two-dimensional Ising
models with binary channel noise (two parameters altogether) and by Geman &
McClure (1987) for one parameter in the context of single-photon-emission computed
tomography (spEcT). Pickard (1987) develops asymptotic maximum likelihood
estimation, but this approach is available only for the Ising model. Possolo (1986)
and Derin & Elliott (1987) note that, for certain noise-free binary images, conditional
logits are linear functions of the parameters. This motivates a least-squares approach
to parameter estimation which is further discussed by Gray et al. (1991).

We now concentrate on and illustrate the Monte Carlo-based RM algorithm
introduced in §4.1.

5. Monte Carlo restoration—estimation algorithms

We begin this section by proposing a more general framework for the Rm algorithm
described in §4.1. Suppose that, when the complete data, (x,y), are available, we
estimate 6 by

A

0 =g(x,y). (5.1)

The function g may or may not be explicit, so that (5.1) formally includes any
method such as maximum likelihood, maximum pseudo-likelihood or moment
estimation.

Consider now the following Monte Carlo approach to deal with the case where only
Y = yis given. The procedure generates a sequence {#™} of iterates, starting from an
initial guess, 6.

Phil. Trans. R. Soc. Lond. A (1991)
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Estimation of parameters in hidden Markov models 417
R-step (restoration): for specified 7', generate samples @, 1), .., %pipp from
m(x|y, 6™).
E-step (estimation): two possibilities are considered here,
1 T
EA . take 6(m+1) = i, .?1 g(x(m+1)j; ?/) 5
g (m+1) 1
Ey: take 0 =gl Z Ty Y |-
] 1

We describe both of these algorithms as stochastic restoration—estimation (SRE)
algorithms and denote them by srE, and srREg. There may be other variants of the
SREp algorithm. When (5.1) defines the maximum (pseudo-) likelihood estimate, we
refer to the algorithm as the srm algorithm. Clearly, unless ¢ is ‘linear’ the SREy
algorithm, as stated, will be different from the srE, algorithm, which is more
obviously motivated by (5.1), but this discrepancy often disappears asymptotically,
as indicated later.

Example 5.1. Scalar exponential family

Suppose 6 is scalar and
fla,y0) oc (1/C(0)) exp {0H (2, y)}.
Let 0 =g(x,y) (5.2)

denote the inverse of the likelihood equation, which is

0)/C(0) = H(x,y).

Thus ¢(x,y) is a function of the sufficient statistic, H(x,y). With an abuse of
notation, write (5.2) as

0 =g(H(x,y)),

which motivates the following variant of the srmy algorithm,

1 T
Hmty = g(i, hy H(x(m+1)jay))‘ (5.3)
j=1

In general, g will often be a function only of the appropriate sufficient statistics,
and certainly so if 6 in (5. 1) is the maximum likelihood estimate.

Special cases, in the maximum likelihood context, are as follows,

(i) The case 7'=1, for which £, and Ky are equivalent, correspond to the sEm
algorithm for mixture data described by Celeux & Diebolt (1985),

(ii) A further special case is discovered if 7'—>00 in example (5.1). In that case,

Z H(x(m+1)j’ ) »E[H(X’ y) I Y, G(M)]’

]—1
so that the srEy algorithm corresponding to (5.3) is just the Em algorithm itself. For
large 7', the results should approximate those for the Em algorithm.

It is now appropriate to discuss the properties of the random sequence {6™}. Let
Q, denote the range of estimates 6™ for given y; 2, is assumed to be the same, for
all m. Also, let

K(- 16", y)

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

/,//’ \\
J

A
i P 9

P
4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

"/\\
A Y

A

i \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

418 W. Qian and D. M. Titterington

denote the conditional density of 6V, given ™ and y. K( |6, y) is then related to
the conditional density of random variable g(X, Y), given Y =y, with parameter 6,
according to whichever of our algorithms is in use. Let

Pl 1Y)
denote the conditional density of 6™ given y,m = 1,2,.... Then

St |y>=f o ) K( [ ryydr, m=1,2,....

2y

Often, {p,,} will converge to the eigenfunction, corresponding to eigenvalue unity,
of the integral operator

f K(-|1,y)p(tly)dr,
‘QU

in which K(A|7,y) can be regarded as the transition function of a homogeneous
Markov chain.

By using the Hilbert projective metric, this convergence can be proved in the case
where 2, is a closed, bounded region and K(A|7,y) is a positive-valued, continuous
function of (A, 7) on 2, x 2, provided the initial p, is continuous and positive-valued
on £,.

Th?é required ergodicity of K cannot be established in any generality but the hope
is that, in practice, {p,} converges to an eigendistribution p* that satisfies

p*(ly) = JQ K(-|7,y)p*(t|y)dr (5.4)

and that, ‘eventually ’, 8 can be regarded as being a random deviate from p*(- | y).
The resulting p* can be used in many ways, of which the simplest is to use a
sample mean of realizations as the ‘final” estimate of 6. In general, it not possible to
relate p*(- |y) to the relationship between y and the true 6.

In this paper, we derive theoretical results only for a very simple example and
merely illustrate the usefulness of the methods for Markov random fields.

Bxample 5.2

Suppose X; ~ N(6, 07), Y| x; ~ N(x;,03),% = 1,...,n, that all {X,} are independent,
and that (2.6) holds. We assume o7 and o3 are known, that the z; are missing and that
6 is of interest.

In this example, exact calculations are feasible, since, marginally, for each ¢,

Y, ~N@O,c%+02)

4 1r
d 0 =y =—> Y.
an g ni‘l Yi
is the obvious estimate of 6 from data y,,...,v,,.

Srm algorithm with T = 1
r-step: for i = 1,...n, generate x{"™*V from p(x,|y,, 6™);
TG
M-step: take D = — 3 pm+D,

i=1

Phil. Trans. R. Soc. Lond. A (1991)
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Table 1. Values of i, and sample mean and variance of late iterates of 0™, for two data-sets
corresponding to Example 5.2

data-set 7 gm V(g™
1 1.4358  1.4266  0.0363
2 0.3315 0.3379  0.0292

Thus, in the general notation,

M =

1
g(x7y) - ;Z_Z 1xi'

It is straightforward to show that, given y and 6™,

(5.5)

2 2 55 2 .2
gomin) N[0'2 O™ +o2y  oiol ]

oit+or n(ot+od)

Relationship (5.5) defines the density K(-|7,y) and it is easy to check that the
corresponding stationary density, p*(-|y) satisfying (5.4) is that of the

_ o301 +03)
"n(o?+202)

distribution. If, therefore, the skm algorithm is carried out to convergence and a
sample average of late iterates of 6™ is used as an estimate of the parameter, then
that sample average should differ from the true maximum likelihood estimate only
by an amount quantified by the above stationary distribution.

In a very simple illustration with n = 20, 6 = 1, and o2 = ¢% = 1, two sets of data
{y;} were generated. For each set, {0/ : m = 1,...,2000} were generated and the
sample mean and variance calculated for the last 1000 iterates are as given in
table 1.

Note the proximity of #™ to 7 in each case, and that the theoretical variance is
0.0333.

SrM algorithm with general T

In this case, {&{"*V:¢=1,...,n,t = 1,... T} are generated,
1 n T
+1) +1
gm )_n_Tz intm )
1=1t=1

Here K(- |7,y) is the density corresponding to a

oir+0y ool
N 2 2 1 2 2
oi+o: nl(oci+03)

random variable, and p*(- |y) is that for a
7 o301+ %)
"nT(o5+203)
random variable. As 700, p*(- |y) becomes degenerate at 7, and the srkm algorithm
becomes the EM algorithm.
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420 W. Qian and D. M. Tilleringlon

We now present a case with a small sample size to show the difference that can
arise between the skm, and SrRMy algorithms.

Example 5.3. Markov chain with periodic boundary condition and parameter f

Here

5
Py, 25 B) = Wexp{ﬂzxixiﬂ}’
i-1

where x;e(—1,1},¢=1,...,5,2, = 2, and § > 0. It is easy to show that
C(B) = 2(e* + 10 + 5e3F).

Although we can clearly deal with the likelihood itself, consider estimating § by
maximizing the pseudo-likelihood,

5
H P | 21, i)

5

5
If S(x) = Z X, Sy(®) = X O(X1, %),

i-1
it is easy to show that the maximum pseudo—likelihood estimate of £ satisfies
0 = (e —e )/ (e¥ +e7%) (x)/S,(x

Suppose now we observed, not x, but noisy data
Y= (Yy,...,¥5) = (0.80, 0.98, 1.01, —1.15, —0.95),

assumed to be modelled by y, = ¥, +¢;, where the ¢, ~ N(0,0.36), independently.
In this very simple example, it is easy to generate samples from the posterior
distribution, in order to implement the following iterative steps of the algorithms:
SRM, :
A 0(m+1) 1 é S(m+1)’
Tt 1S(rrH—l)
SRMp:
7 7
0(m+1) — Z SY;H'D/ Z S(zrtn+1)’

t=1 t=1

where S{7*D and S{*V are S, and S, as obtained from the tth simulated x. The
iterative step in the corresponding Em-algorithm is as follows,

EM:
B{S,(X) |y, 0}

6(m+1) —
B{Sy(X) [y, 6™

For the data provided as above, the Em algorithm (as given by the above formula)
leads to the maximum (pseudo-)likelihood estimate 6,,, = 0.9866.

Both the skm, and srmy algorithms were run for 60 cycles, with 7'= 1000. The
empirical means of the last 40 iterates were

6, =09954 and 0y =0.9852,

in obvious notation. The latter is clearly close to 6 - Not surprisingly, 6 4 18 different
from 6y, but is very close to the solution of

* = B{S,(X)/8,(X) 0%, y},
namely, 6* = 0.9955.
Phil. Trans. R. Soc. Lond. A (1991)
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Estimation of parameters in hidden Markov models 421

Here, we did not estimate the variance of the noise. If the variance is larger, the
difference between the estimates from the two procedures is larger.

Note that the sample size of n = 5 is very small. As n—>c0, the ergodic properties
of 8,(X) and S,(X) will imply that ,,, and 6* will ultimately be the same, so that
the results of the skm, and srmy algorithms will be comparable.

Example 5.4. Binary first-order Markov chain
Suppose

el ) = i ex {ﬂ S da, x)}

where x;€{1, 2} for all 7. Given #;, Y; ~ N(x;, 0®), independently for all ¢. Both £ and
o?® require to be estimated. For illustrative purposes, we consider maximum pseudo-
likelihood estimation as the basis of the estimation of §. The log-pseudo-likelihood is

BSy(x) = Sy(x) In (€2 + 1) —S,(x) (B+1n 2), (5.6)
where Sy(x) = 0(xy, 2,) +2 "iz O(s, Xpyq) +0(, g, 2),
i-2

Sy(x) = X 024y, %414),

i=2
Sy(x) = n—2—_8,(x).

Maximization of (5.6) gives

0 =e¥/(e¥+1) = (S,(x)—8S4(x))/28,(z). (5.7)
Given x and y, o is estimated by
o= L% (- (5.8)
U

For this example, the partition function can again be evaluated, and is
CB) =2+ 1)t =2[/(1—6)—1)+1]"L.
Thus, the likelihood equation results in

e//(e/+1) = 8,(x)/(n—1),

n—1
where Sy(x) = 2 6y, 24q)-

i=1
In terms of 6, this gives

_ S3(x)
= 1—=8,@)P+84)

(5.9)

Qian & Titterington (1990) developed, for this example, a recursive technique for
maximizing the likelihood corresponding to the observed data, y. As a result, it is
possible to compare the M, skM, and srRMy algorithm based on both the likelihood
and the pseudo-likelihood functions. Results in Qian & Titterington (1990) showed

Phil. Trans. R. Soc. Lond. A (1991)
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0.4
(b)
0.9
~2
a 0.2
6
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0.3 0
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(d)
0.9
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0.7
~ 0.2
0
0.5
0.3 : 0
0.5 0.7 0.9 0.5 0.7 0.9
6 0

Figure 1. Comparison of Em, skRm, and SRM, algorithms for the estimation of  and ¢? in Example
5.4 with ¢ = 0.25 and n = 512; (a), (b) based on likelihood ; (c), (d) based on pseudo-likelihood.
—— EM; ----- , SRM, ; ————, SRM,.

that the EmM algorithm associated with the likelihood function provided very good
parameter estimates. Here, we make comparisons with the other methods. (The
comparison with the EmM algorithm may offer useful extrapolation to the case of two-
dimensional Markov random fields, for which it is impossible to carry out the EmM
algorithm.)

The ergodic properties of the statistics that appear in (5.7)—(5.9) should ensure
that, for large n, the Em, srkM, and srMy algorithms should perform similarly,
whether the likelihood or the pseudo-likelihood is used. Accordingly, the value, 5,
chosen for 7' was much less than was the case in Example 5.3.

Figure 1 displays results for 0 = 0.25 and n = 512. The value of = e*/(e* +1)
was varied between 0.55 and 0.9. For each choice of parameters a single realization
for x was generated and noise added to create y. It is clear that the results from the
EM, SRM, and SRMy algorithms are very similar, and that the results based on
likelihood are very similar to those based on pseudo-likelihood. For each procedure,
except that associated the Em algorithm, 50 iterative cycles were carried out, and the
quoted estimates are the averages of the last 40 cycles.

Figure 2 reports averages of the results based on 40 realizations of (x,y) for each
choice of parameters, this time with ¢ = 0.09 and n = 64. In this case, T = 15, 50
iterative cycles were carried out for each realization and the parameters were
estimated by the averages of the final 30 iterates. Once again, all methods gave very
similar results.

Phil. Trans. B. Soc. Lond. A (1991)
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09 1 (a) 0121 (b)
2 52 /\\f\/\/\
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0.9t (o) 012 ()
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o g
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0.5 ¢ 0
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Figure 2. Comparison of EM, SRM, and srRM; algorithms for the estimation of € and ¢? in Example
5.4 with 0% = 0.09 and n = 64; (a), (b) based on likelihood ; (¢), (d) based on pseudo-likelihood.
BM; ----- , SRM,, ; ————, SRM,.

)

On a theoretical level, there are consistency results for maximum pseudo-
likelihood estimation in the noise-free case (Geman & Graffigne 1987) but little has
been established, as yet, for the case of noisy data.

6. An illustration using satellite data

The top four pictures in figure 3 display a four-band satellite image of the Lake of
Menteith (Scotland’s only ‘Lake’ rather then ‘Loch’!) in Perthshire. As an
illustrative exercise, we shall use our methodology to classify the pixels in 64 x 64
frame into a six-state scene. Thus, for each ¢, z;€{1,2,...,6}. As a prior for X we use
the first-order Markov random field, with probability function

ap)

where the summation is over nearest-neighbour pairs. It is arguable that this prior
is unrealistically simple, in that it treats all pixel states symmetrically. The choice of
six for the number of states is also somewhat arbitrary but serves well for illustrative
purposes.

Each y, is four-dimensional and it is assumed that, for a pixel in state k(x;, = k),

Y~ N(/u’kv V)v

where V is a 4 x4 covariance matrix. There are therefore 24 unknown parameters

P]f) = = exp {/f s 8<xz-,x,->}, (6.1)
i~
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Figure 3. Satellite data

(a)—(d) data from bands 1-4; (e) initial restoration from band 3 data;
(f) final srRM restoration from band 3 data.

associated with the {u#,} and 10 parameters including in V. Altogether, therefore,
including the parameter f, there are 35 unknown parameters.

In the iterative procedure, we shall deal with g itself, rather than any
transformation thereof, as we did for Examples 5.3 and 5.4.

The procedure is initiated by choosing a starting classification. In our illustration,
we achieved this by taking the band 3 image alone, dividing the observed range into
six equal ranges, and regarding these as the six states (a multi-state thresholding
exercise.) The resulting restoration is presented in figure 3e. We report here only
results from the sRM, method, starting from the above restoration and using only the
band-3 data. In this case there are only eight parameters (six means, one variance
and f). The starting parameters were obtained by regarding the initial restoration as
the true scene. The routine in each iterative stage was as follows.

(i) Run 50 cycles of the (posterior) Gibbs sampler starting from the current
restoration.

(ii) Run the Gibbs sampler for further 100 cycles, estimating the parameters after
each 10 cycles.

(iii) Obtain the average of the 10 sets of estimates and use them to start the next
iteration. (Thus, in the previous notation, 7' = 10.)

Note that, at any stage, there is a current restored image. The restoration achieved
after five of the above iterative cycles is displayed in figure 3f.

Next, we used this segmentation to initiate the skm, procedure using the four-
dimensional data. Again, initial parameters were estimated by using this initial
image. Note that the estimation of those mean-parameters and the covariance-
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Estimation of parameters in hidden Markov models 425

Table 2. Satellite data : parameter estimates for mean vectors u, corresponding to six states {S1,...,86},
and for the covariance matriz V using (a) the sku, algorithm, (b) the PPL-1cM algorithm, (c) the PPL-EM-
1cM algorithm

(@) sRM parameters; § = 2.571; {,}

S1 S2 S3 S4 S5 S6

band 1 27.49 27.80 28.53 31.96 30.53 31.58
band 2 20.72 21.85 23.40 28.27 25.54 27.03
band 3  33.69 58.82 75.55 88.78 97.06 110.52
band 4 14.65 46.73 69.85 85.09 95.88 114.40

V

1.72 1.49 2.17 1.69
1.49 3.96 0.72 —-0.75
2.17 0.72 27.42 45.81
1.69 —-0.75 45.81 66.02

(b) PPL-ICM parameters; = 2.736; {/i,}

band 1 27.46 27.83 28.21 31.17 31.21 31.69
band 2 20.69 21.80 22.86 27.16 26.55 27.11
band 3  33.47 57.75 71.53 85.97 99.24 114.76
band 4 14.42 45.11 64.85 82.18 98.55 118.92

vV
1.98 1.88 1.43 0.79
1.88 4.49 0.01 —1.55
1.43 0.01 24.72 32.10
0.79 —1.55 32.10 51.47

(¢) PPL-EM-ICM parameters; ,b’ = 2.606; {4}

band 1 27.47 27.82 28.23 31.21 31.18 31.65
band 2 20.70 21.80 22.89 27.23 26.48 27.03
band 3  33.54 57.91 71.80 86.23 99.30 114.61
band 4 14.50 45.33 65.16 82.46 98.65 118.84

v
1.98 1.88 1.62 1.02
1.88 4.47 03¢ —1.16

1.63 0.34 26.21 33.63
1.02 —1.16 33.63 52.98

parameter is trivial. The algorithm was as above except that 30 iterative cycles were
carried out, rather than 5. The averages of the parameter estimates obtained in the
last 25 cycles are listed in table 2a.

It should be remarked that, in the srRm, algorithm as originally described, the 7'
realizations of the posterior distribution are expected to be mutually independent. In
the case of a two-dimensional Markov random field, it is computationally very
expensive to generate many independent samples. However, two realizations,
suitably far apart in a single operation of the Gibbs sampler, will be only loosely
dependent, a phenomenon which we exploited in our calculations.

Once we have settled on a ‘final’ set of estimates of the parameters, in the present
case the values in table 2a, there is more than one way of producing a ‘final’
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(®) (©)

(d)

Figure 4. Satellite data: (@) final restoration from srm phase; (b) 1cM restoration using SRM
estimates; (¢) Gibbs sampler restoration using skM estimates; (d) PPL-IcM restoration; (e) ppL-
EM-ICM restoration.

classification for the pixels. Here, we report two methods, the former being the result
of applying 25 cycles of Besag’s (1986) 1cm algorithm and the second involving
implementation of an idea that originates in Besag ef al. (1991). In the latter, many
samples from the estimated posterior distribution are generated (we ran the Gibbs
samplers for 500 cycles), and the most frequently generated state at any given pixel
is used to create the restoration; in fact, we noted the states only after every fifth
sampling cycle. We initiated both these procedures with the ‘final’ restoration
created during the estimation phase. That particular image and the results of
implementing the two restoration stages are presented in figure 4. The three images
show very few mutual differences.

Also displayed in figure 4 are the results of two further estimation-restoration
algorithms, the decision-directed ppL-1cM algorithm of Besag (1986) and the ppL-EM-
rem algorithm of Qian & Titterington (1991). Both were initiated from the initial
restoration from the band 3 data, shown as figure 3e. The corresponding sets of
parameter estimates resulting from the two procedures are shown in table 25, ¢. The
two sets of estimates are very similar, as are the two restorations. The reason for this
may be that the noise is small compared with the ‘original* image, bearing in mind
the estimated covariance matrix and the mean-parameters; for example, for all three
procedures, the differences of means between state 5 and state 6, associated with
band 4 data, are about 20.0, while the standard deviations associated with band 4 are
about 8.0 or less.

Phil. Trans. R. Soc. Lond. A (1991)
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7. Discussion

In this paper, we have highlighted the difficulties involved in estimating
parameters in hidden Markov models and we have reviewed methods that have been
proposed for dealing with them. Detailed discussion and illustration have been
presented of a subclass of the methods that have a strongly Monte Carlo flavour.
Further research is required to consolidate these methods, in term of theory and
implementation. However, the results reported here and, in particular, the account
of Example 5.4, suggest that srRm algorithms based on pseudo-likelihood may be
valuable alternatives to EmM algorithms in problems in which the latter are totally
impracticable.

The ideas should also be useful for the estimation of parameters in other contexts
where models with interactive characteristics are essential. Prime examples are the
fields of probabilistic expert systems (Lauritzen & Spiegelhalter 1988) and the use of
statistical modelling in neural networks (see for instance Bourlard 1990).
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Julian Besag for his helpful comments on an earlier draft of the paper, and to Dr Jim Kay for
kindly providing the data for the Lake of Menteith example.
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